18 research outputs found

    Longitudinal Assessment of Gray and White Matter in Chronic Schizophrenia: A Combined Diffusion-Tensor and Structural Magnetic Resonance Imaging Study

    Get PDF
    Previous studies have reported continued focal gray matter loss after the clinical onset of schizophrenia. Longitudinal assessments in chronic illness, of white matter in particular, have been less conclusive

    Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia

    Get PDF
    We acquired diffusion tensor and structural MRI images on 103 patients with schizophrenia and 41 age-matched normal controls. The vector data was used to trace tracts from a region of interest in the anterior limb of the internal capsule to the prefrontal cortex. Patients with schizophrenia had tract paths that were significantly shorter in length from the center of internal capsule to prefrontal white matter. These tracts, the anterior thalamic radiations, are important in frontal-striatal-thalamic pathways. These results are consistent with findings of smaller size of the anterior limb of the internal capsule in patients with schizophrenia, diffusion tensor anisotropy decreases in frontal white matter in schizophrenia and hypothesized disruption of the frontal-striatal-thalamic pathway system

    A working memory buffer in parahippocampal regions: Evidence from a Load Effect during the Delay Period

    No full text
    Computational models have proposed that the entorhinal cortex (EC) is well suited for maintaining multiple items in working memory (WM). Evidence from animal recording and human neuroimaging studies show that medial temporal lobe areas including the perirhinal (PrC), EC, and CA1 hippocampal subfield may contribute to active maintenance during WM. Previous neuroimaging work also suggests CA1 may be recruited transiently when encoding novel information, and EC and CA1 may beinvolved in maintaining multiple items in WM. In this study, we tested the prediction that a putative WM buffer would demonstrate a load-dependent effect during a WM delay. Using high-resolution fMRI, we examined whether activity within the hippocampus (CA3/DG, CA1, and subiculum) and surrounding medial temporal cortices (PrC, EC, andparahippocampal cortex—PHC) is modulated in a load-dependent manner. We employed a delayed matching-to-sample task with novel scenes at 2 different WM loads. A contrast between high- and low-WM load showed greater activity within CA1 and subiculum during the encoding phase, and greater EC, PrC, and PHC activity during WM maintenance. These results are consistent with computational models and suggest that EC/PrC and PHC act as a WM buffer by actively maintaining novel information in a capacity-dependent manner

    Partially renewable copolyesters prepared from acetalized D-glucitol by solid-state modification of PBT

    No full text
    The backbone of poly(butylene terephthalate) (PBT) was modified with 2,4:3,5-di-O-methylene-D-glucitol (Glux) using solid-state modification (SSM). The obtained copolyesters proved to have a non-random overall chemical microstructure. The thermal properties of these semicrystalline, block-like, Glux-based materials were extraordinary, showing higher melting points, and glass transition temperatures compared with other sugar-based copolyesters prepared by SSM. These remarkable thermal properties were a direct result of the inherently rigid structure of Glux and the relatively slow randomization of the block-like chemical microstructure of the Glux-based copolyesters in the melt. SSM proved to be a versatile tool for preparing partially biobased copolyesters with superior thermal propertie
    corecore